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1. INTRODUCTION

In this paper, we study cardinal interpolation of bounded data by integer
translates of shifted symmetric box splines based on a three-direction mesh.
To set notation, let M n denote the centred bivariate box spline corre­
sponding to the directions (1,0), (0,1), (1,1), each occurring with equal
multiplicity n (see [1] for the relevant definition). For any vector
a:= (ai' (2), we denote by M n ~ the function M n(· + a). Let Pn ~ stand for, ,

the characteristic polynomial given by

Pnjx):= L Mn,Aj)e-ijX
jEZ2

By virtue of the Poisson summation formula [4, p. 129], we have

Pn,~(x) = L Mn,~(x + 2nj)
jEZ2

= L Mn(x + 2nj)ei~(x+21tj),

jEZ2

(1.1)

(1.2)

where Mn denotes the Fourier transform of Mn- Let us recall here that Mn

is given by (cf. [1])

. with

S( t) '= [Sin(t/2)J
. (t/2)'
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(1.3)

(1.4 )
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2. CARDINAL INTERPOLATION WITH Mn.~
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Let t/!: R 2 -+ R be a compactly supported continuous function.
cardinal interpolation problem (CIP) with t/! is said to be correct if to each
bounded real-valued function f defined on R 2

, there corresponds a unique
bounded sequence {aj :jEZ2

} such that LjEZZaj!/J(.-j) agrees with/on
Z2. In the case when !/J is a box-spline based on a three-direction [(1,0),
(0,1), (1,1)] mesh, this problem was first studied by C. de Boor, K.
HoIlig, and S. Riemenschneider in [1]. Therein, it was shown that cardinal
interpolation with such a box-spline M is always correctfor any arbitrary
selection of positive mutiplicities in each of its mesh directions. In par­
ticular, this is certainly true for the choice M = Mn- The focus of interest
in the present paper is a "shifted" version of this result, namely, the correct­
ness of the CIP with Mn.~' Since Mn.~ is also a continuous function with
compact support, we have the following useful necessary and sufficient
condition.

THEOREM 2.1. Cardinal interpolation with M n ~ is correct if and only if
Pn,Jx) does not vanish.

Proof See [1, p. 536, Theorem 2].

3. SYMMETRIES OF Mn.~ AND Pn,~

We now deduce some symmetries of Mn.~ and Pn.~ which serve to make
any further analysis less onerous. This study follows the tone set by de
Boor et al. [1]. As the details of the proofs of our assertions are similar to
those in [1], they will be omitted here.

Following [1], let A denote the group of matrices

(~ ~)

(-1 1)
01'

( 0-1)
-1 0'

(-1 1)
-1 0'

G-~}

(0-1)
1 -1

that is isomorphic to 53 (the group of permutations on 3 indices). Then, for
any A EA and xER2

, there hold

M n• ±A~( ±Ax) = Mn.ix ),

M n,±A~(X) = Mn,~( ±A*x),

Pn.±A~(X) = Pn.~( ±A*x),

(3.1 )

(3.2)

(3.3 )
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where A* denotes the transpose of A. As for the relevance and importance
of studying the role of A and A* := {A * :A E A}, the reader may wish to
consult [IJ and [2].

4. CORRECTNESS OF THE CIP

We begin this central section by introducing some more notation. For
convenience, we set x:= (2nu, 2nv) and 8:= (8 1 , ( 2 ):= (2nCl: I , 2nCl:2)' Let Q
and A denote the interiors of the regions in Figs. 4.1 and 4.2, respectively.
Let Q represent the interior of the quadrilateral whose vertices are

(0,0), and (0, ~)

(see Fig. 4.1) and let the (closed) triangle (see Fig. 4.3) with vertices at

(0,0), and (~, ~)

be denoted by .d. We further subdivide .d into two parts, .d I and .d 2

(Fig. 4.3), where .d I is the quadrilateral formed by the vertices

(0,0), (*,0),

FIGURE 4.1

and

(0,1/2)

(fg, fg)

(1/3, 1/3)
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J-----,,(1t,1t)

FIGURE 4.2
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and LJ 2 is the complement of L1 I in LJ. These regions LJ I and L1 2 are chosen
so that the estimates below (in Theorem 4.1) hold even for n = 2. Likewise
(see Fig. 4.2), A is divided into six sub-regions.

It is known that {J (the closure of Q) is a fundamental domain; i.e., its
translat,es form an essentially disjoint partition of R2/2n (see [1 J and [2J).
Further, Q and (J are invariant under A* as are A and ;r under A.

(1/2,0)
"-----------<li----&.

u-axis

FIGURE 4.3
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From (1.2) and (1.3), we see that

e-i(Uel + Ve2)Pn,~(2nu, 2nv)

= [S(2nu) S(2nv) S(2n(u + v))]n

[ ( ) n ( )n ( +)n ]X 1 + I U v U v ei(kel + 182)
(k,I)EZ2\(O,O) u+k v+! u+v+k+!

=: [S(2nu)S(2nv)S(2n(u + v))]n[Qn,e(u, v)], (4.1 )

where S is the sinc function defined in (1.4).
This section is arranged as follows. We first show that Pn, ~(2nu, 2nv)

does not vanish on Q (and hence in R 2) for eE A and n even. Then we
prove that for all n, Pn,~(2nu, 2nv) vanishes somewhere on the boundary of
Q for all values of e on the boundary of A. Finally, with the aid of these
results and Theorem 2.1, we obtain a correctness result for Mn,~ when n is
even. This last theorem is the primary objective of both this section and
this paper.

First, we make some preliminary observations. It is not hard to see that
Q = UA E A A *~ and this, taken together with_ (3.3) and the invariance of A
under A, allows us to consider only (u, v) E Q and eE A in our subsequent
discussion. Moreover, from the definition of S(t) (see 1.4), it ~ quite clear
that [S(2nu)S(2nv)S(2n(u+v))Y is never zero for (U,V)EQ. Therefore,
the zeroes of Pn,~ are completely determined by Qn,e(u, v). This brings us,
then, to our first theorem of this section.

THEOREM 4.1. Let n E N be even and eE A. Then, for (u, v) E Q,
Qn,e(u, v) is non-zero.

Proof To simplify matters, observe that (see (4.1))

(4.2)

This observation, coupled with the fact that Q and A are symmetric about
their main diagonals (u = v and e1 = e2 , respectively), permits us to restrict
ourselves to (u, v) E L1 and eE A for the duration of the proof. Let us denote
the imaginary part of Qn,e by

and the imaginary part of eie2Qn,e(u, v) by

In,e(u, v) := :i[eie2Qn,e(u, v)].

(4.3 )

(4.4)
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The proof proceeds in a series of four steps. The actual numerical bounds
for the various infinite series that follow were generated by a computer and
are accurate to at least four decimal places.

Step I.

(u, v) E A, 8= (0, 0).

In this case, Q",e(u, v) is strictly positive by virtue of Theorem 4 on p.539
of [1].

Step II.

8EA\(0,0).

From Fig. 4.3, we see that (u, v) E Al implies

and O~u+v~~. (4.5)

We first note that for O~a~w~b< l,jEZ, and 11 (~2)EN, one has

(4.6)

a consequence of the fact that the function g(w):= Iw/j+wl is non·
decreasing on [a, b]. Observe, now, that

IQ"e(u,v)l~l- L I_U_I"I_V_j"il u+v /"
, (k,l)EZ2\(O,O) u+k v+1 u+v+k+1

~1- L I 19 l"I-5 In l 5 I"
(k,I)E Z2\(O,O) 48k + 19 18l + 5 9(k + I) + 51

~ 1 - (k,I)Et\(O,O) 148:: 191" 119/

5

+ 5j2!9(k:1) + 51
2

~ 1 - 0.9939... > 0, (4.7)

by (4.5), (4.6) and the fact that the summands on the right are less than 1.

So, Step II is complete.

The next two steps (III and IV) are less straightforward, as we shall
presently see.

Step III.
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We do the case 8EA] explicitly. The case 8EA 2 can be handled entirely
analogously. First, from Fig. 4.3, we have, for all (u, v) E LJ 2'

v~u. (4.8)

Also, from Fig. 4.2, one can see that 8 E A] implies

In addition to (4.6), we will also use the inequality:

(4.9)

For O~a~w~b<l, jEZ\{O}, n(~2)EN,

1~~:ln~I~~:ln. (4.10)

This follows from the observation that the function h(w) := 11 - wij + wi is
non-increasing in the interval [a, b]. Furthermore, we also have, for mE Z
and r/JER,

Icos r/JI ~ 1

I
Sin mr/J\ & I I

• A. "" m.
smlf'

(4.11)

We now show that Qn,e(u, v) has no zeroes by showing that In,e(u, v) has
none. By virtue of (4.1), we have

(
u )n ( V )n ( U+ V )nIn,e(u,v)= L --k -I k 1 sin(k8] + 182 )

(k,I)EZ2 u+ v+ u+v+ +

(
u )n ( V )n ( U + V )n= L -- -- sink8] cos 182

k+I#'O u+k v+1 u+v+k+1

(
u )n ( V )n ( U+ V )n+ L -- -- cos k8 1 sin 182

k+I#'O u+k v+1 u+v+k+1

(
u )n ( V )n ( U + V )n.+ I --k -I k 1 sm(k8] + 182 )

k+I=O U+ V+ u+v+ +

=: Sf + S" + Sill. (4.12)

We will handle each of these three sums separately by isolating an
appropriate dominant term from each of them and factoring it out. If
r(k, l) represents the (k, l)th term in (4.12), then the dominant terms for
S', S", and Sill are r(-l,O), r(O, -1), and r(1, -1)+r(-1, 1), respec­
tively. Thus, we have
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S' (u)n ( U +V )n . 8= - -- sm !l-u l-u-v

[ ,(1-u)n ( v )n ( 1 - u- V )n sin k8! 8 1x 1--- -- --cosl zI u + k v + I u + v +k + I sin 8! J
S" (v)n ( U + V )n . 8= - -- sm zI-v l-u-v

[ I" ( u )n (1- v)n ( 1-u- V )n sin fez. k8 ]
x 1 - u +k v + I u + v + k + I sin 8z cos !,

and

where L' denotes the sum over

185

(4.13)

(4.14)

(4.15)

with k +1#0, (k, l) # ( -1,0), and k # 0,

L" represents the sum taken over

with k+I#O, (k, 1)#(0, -1), and 1#0,

and

[

1-(Sr G1~r] sin r(8 1 - 8z)

ar(u, v, 8j, 8
z
) := 1-C=:rc: ~r sinC8! - 8z)' (4.16)

Let us consider the sums that occur in (4.13 ), (4.14), and (4.15)
separately. Using the inequalities (4.6), (4.8), (4.10), and (4.11) repeatedly,
we find that for (4.13),

I (1 -u)n ( V )n ( 1-u- V )n sin ke! Ie1- -- -- . --cos zI u + k v + I u + v + k + I sin e1

~ 1- I' 1~ln I_v In I 1-u- vlnlsi~ kelllcos !ezl
u + k v + I u + v + k + I sm ej
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" 13 I" I 1 I" I 29 I"~ 1 - L: 18k + 5 3l + 1 1 48 (k + l) + 19 Ikj

, I 13 1

2
1 1 1

2
\ 29 1

2

~1-L: 18k+5 3l+1 48(k+l)+19 Ikl

~ 1- 0.3342... > 0 (4.17)

and similarly, for (4.14),

,,( u )" (1 -V)" ( 1- u - V )" sin le2 ke1-L: -- -- --cos 1
u+k v+l u+v+k+l sin 82

~1_L:"I_u_I"11-Vl"11-u-v 1"lsi.n{(J21IcoSke21
u + k V +1 u + v + k + 1 sm 82

"I 1 I" 111" I 29 I"~ 1 - L: 2k + 1 I 48(k + I) + 19 III

"I 1 \2 \11
2

\ 29 \2~ 1 - L: 2k + 1 I 48(k + I) + 19 III

~ 1 - 0.9821... > O. (4.18 )

To estimate the sum in (4.15) from below, we also need the following: for
rEN,

(
1- U)(1 + V) (r- u)(r + V)O~v~u=>O~ -- -- ~ -- -- ~ 1.
1-v l+u r-v r+u

Inequalities (4.11) and (4.19) ensure that (cf. (4.16)), for rEN,

Consequently, one has

(4.19 )

(4.20)

1+ f (1-U)"(I+V)" a,(u, v, ej, (2 )

,=2 r-u r+v

00 1
1

- U I"11+V!"~ 1- L: -- -- la,(u, v, ej, (2 )!
,=2 r-u r+v

00 (1)"( 4 )"~1-L: - -- r
,~2 r 3r + 1

~1_I (~)2 (_4)2 r
.. ~2 r 3r + 1

~ 1- 0.28... > O. (4.21)
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From (4.17), (4.18), and (4.21), we conclude that the signs ofS', S", and
S'" coincide with those of their respective dominant terms and that their
zeroes are precisely those of these dominant terms. But, froIll (4.9), (4.19),
and the fact that n is even, one can see that all of these three dominant
terms are of the same sign and that they do not vanish simultaneously. This
shows that I", e(u, v) is non-zero and finishes Step III.

Step IV. In this final step, we exhaust the only remaining case; namely,

Note that the estimates for u, v, and u + v are still given by (4.8) as in the
previous step.

Here we will prove that Q" e(u, v) has no zeroes by showing that
eie2Q",e(u, v) does not have any; the latter, in turn, will be achieved by
demonstrating the absence of zeroes for I",e(u, v). It will become quite
apparent that the modus operandi for doing so is similar to that in Step III.

The fist part of the proof involves some tedious, albeit unavoidable
calculations. We commence by writing

_. ( U )" ( V )"I" e(u, v) = sm 82 + L --.-
, (k,l)EZ2\(O.O) u+k v+1

(
u+ v )"x k I sin(k8 j +U+l)82 )

u+v+ +

(
u )" ( U + V )"= sin 82 + -1- 1 sin(82 - OJ
-u -u-v/

(
u + V )"X cos k8 j sin(l + 1)82u+v+k+l

+I'" C:kY C:J"
(

U + V )n
X sin k8 j cos(l + 1)82 ,

u+v+k+1

where L'" stands for the sum over

(4.22 )

(k, l) # (0, 0), (k, l) # (-1,0).
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The last sum in (4.22) can be recast by writing 81 = 82- (82- 81); the
resulting expression for In,e is

_ ( U )n ( U + V )nIn,e(u,v)=sin82 + l-u l-u-v sin(82-8d

", ( U )n ( V )n ( U + V )n
+I u+k v+l u+v+k+l

x cos k8 1 sin(l + 1)82

", ( U )n ( V )n ( U + V )n
+I u+k v+l u+v+k+l

x sin k82 cos k(82 - 81)cos(l + 1)82

-I'" C:kr C:Jn C+::~+lr
x sin k(82- 81 ) cos k82 cos(l + 1) 82, (4.23 )

The first two summands in (4.23) constitute the dominant terms in the
expression for In,e(u, v). Accordingly, we assign the appropriate sums in
(4.23) to each of these (dominant) terms and then factor them out. More
precisely, we write (4.23) as

_ [( U )n ( V )n ( U +V )nIn,e(u, v) = sin 82 1+ I'" --k -
1*-1 u+ v+l u+v+k+l

sin(l + 1)82 k8
X • 8 cos 1

sm 2

(
U )n ( V )n ( U + V )n

+ k~~' u+k v+l u+v+k+ I

sin k82 ]x -'-8- cos k(82 - 8d cos(l + 1)82sm 2

(
U )n ( U + V )n

+ l-u l-u-v sin(82-8d
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(
v)n (1-U)n (l-u-V)n

- u+v k+~=O k+u I+v
k#O

189

sink(82-81 ) k8 (I 1)8J-'T' T" (4.2·'.·)x . (8 8) cos 2cos + 2 -. +, ""
sm 2- 1

where L' and L'" are the same as before.
Just as in the previous step, we estimate, from below, the sums that are

featured in T' and T" individually and show that they are bounded away
from zero. Again making use of the inequalities given by (4.6), (4.8), (4.10),
and (4.11), we have for T',

(
U )n ( V )n ( U +V )n

1+ !#I..~'; u + k v + I u + v + k + I

sin(l + 1)82 k8
x . 8 cos 1

sm 2

", ( U )n ( V )n ( U +V )n
+ k~O u+k v+1 u+v+k+1

sin k8 2x -.-8- cos k(8 2 - ( 1 ) cos(l + 1)82
sm 2

~1- I..'" l_u_lnl_v_ln I u+v Inlsin(~+1)821IcoSk811!# ~ 1 U + k v + I u + v + k + I sm 82

", I u InI v 1nI u+ v InIsin k() 21
- k~0 U + k v + I u + v + k + I sin 82

x Icos k(8 2 - 8d cos(l + 1)821

1 ,,'" I 1 In 1 1 1nl 2 In I 1~ -1#~1 2k+l 3/+1 3(k+/)+2 I + I

", 1 1 In I 1 In 1 2 In
- k~O 2k+1 3/+1 3(k+l)+2 Ikl

~ 1- l#~': 12k~ 11

2
/31 ~ 1/

2

/ ;(k +21) + 21

2

11+ 11

- k~:' 12k~ 11

2

131 ~ 11

2

13(k +\ + 21

2

Ikl

~ 1- 0.9812... > O. (4.25 )
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Turning to T", we use the additional fact that for n (~2) EN,

( V )n (l)n 1O:(v:(u=>O:( -- :( - :(-
u+ v 2 4

to deduce that

( v)n (l-U)n(l-U-V)n
- u+v k+~~O u+k l+v

k#O

sin k ((J 2- (J 1 )
X . ((J (J) cosk(J2cos(l+1)(J2

sm 2- 1

'11- u l
n
l v I

n

I

1
-

u
-

v In~l-L u+k v+l u+v+k+l

I
sin k( (J 2- ()dI

x sin((J2 _ (Jd Icos k(J2 cos(l + 1)(J21

I
v In 1

1- U !nI 1- V!n
- u+v k+~=O u+k v+l

k#O

'1 13 I
n

l 1
Inl 29 In~ 1 - L 18k + 5 31 + 1 48(k + I) + 19 Ikl

(l)n 1 131nl11n- - L - Ikl
2 k + I ~ 0 18k + 5 I

k#O

'I 13 1

2

1 1 1

2

1 29 1

2

~ 1 - L 18k + 5 31 + 1 48(k + I) + 19 Ikl

1 I 13 /2/
1

/2-- L - Ikl
4 k + 1=0 18k + 5 I

k#O

~ 1 - 0.4854... > O. (4.26)
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From (4.25) and (4.26), it is clear that T' and Til have the same signs as
their respective dominant terms and that their zeroes are those oj these domi­
nant terms. Now, for (U,V)E.,12 and (1E[U~=3AJ\(O,O), these dominant
terms are both oj the same sign and are never zero simultaneously. As a
result, it foUows readily that In,ri u, v) is non-zero as desired. This concludes
Step IV and with it the proof of the theorem in its entirety.

Remark. Since the case n = 1 can be handled directly, the various
estimates in the proof of Theorem 4.1 which used the fact that n ~ 2 do not,
in fact, rely on the evenness of n. The only stage in which the evenness is
used is in Step III.

Our next result which holds true for aU (not just even) n, serves to locate
the zeroes of Pn,~(x).

THEOREM 4.2. Let n E Nand °~ y~ 1/2. Then the Jollowing hold:

(i) Pn, (l/2,yj(n, 0) =°= Pn,(-1/2, _y)(n, 0).

(ii) Pn,(y, 1/2)(0, n) = °= Pn,( _y, -1/2/0, n).

(iii) (a) Pn,(y,I/2/0, -n)=O=Pn,(_y,_1/2j(O, -n).

(b) Pn,( -1/2+ y, y)( -n, n) = 0 = Pn,(l/2-y, _y)( -n, n).

(iv) (a) Pn,(1/2,yj( -n, 0) =0 = Pn,(-1/2,-y)( -n,O).

(b) Pn,(y,y-l/2j(n, -n)=0=Pn,(_y,_y+l/2j(n, -n).

Proof It suffices to prove (i) and (ii). Assertions (iii) and (iv) foHow
from (i) and (ii), respectively, by invoking the symmetry conditions stated
in (3.3).

To prove (i), we set v =°in (4.1). The resulting expression depends only
on (11:

e-iU01Pn,i2nu, 0) = [S(2nu)J2n [1 + L (_u_)2n eik01J. (4.27)
kEZ\{O) u+k

Since the RHS of (4.27) is zero if and only if [5, Theorem 2.2J

u= 1/2 and

(i) is proved.
Similarly, setting u = °in (4.1) yields (ii).

We now proceed to our main result, which is
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THEOREM 4.3. Let n E N be even and 2noc E A. Then cardinal interpolation
with M n,rx is correct if and only if 2noc E A.

Proof As we remarked earlier, it is manifest from (4.1) and the
definition of S(t) that Pn,rx(2nu, 2nv) is zero if and only if Qn,e(u, v) is zero.
The desired result now follows from Theorems 4.1 and 4.2 via Theorem 2.1.

Remark. K. Jetter (in [3J) has indicated that the above result has been
obtained independently by J. StockIer with Mn,rx replaced by

M .(k,l,m),r>.' 1 ~ k, I, m ~ 2, k +1+ m ~ 5.

Here M(k.l,m) denotes the bivariate box spline corresponding to the three
directions (1,0), (0,1), and (1,1) which occur with multiplicities k, I, and
m respectively. However, it should be pointed out that neither StockIer's
result nor ours can be deduced from the other.

5. CONCLUDING REMARKS

A scrutiny of the proof of Theorem 4.1 reveals that a crucial point in the
argument in Step III (the only place where the evenness of n is used) is the
fact that for BEAt (resp. A 2 ), In,e(u,v) does not change sign in ,12'

However, one can show that this is no longer true when n is odd. Moreover,
the situation, in this case, cannot be remedied by rotating Qn.e(u, v) by a
suitable angle (as done in Step IV). As a result, our method of proof
fails for splines with odd multiplicities. Nevertheless, we believe that
Theorem 4.3 remains valid in this situation as well.

One other remark also seems to be in order here. Suppose that oc is
chosen along any of the three mesh directions, i.e., oc is of the form (Y,O),
(0, y), or (y, y), where - ~ ~ y ~ ~ . Then, from Theorem 4.2 and the proof
of Theorem 4.1 (specifically, Steps I, II, and IV) and the fact that the set
{(y, 0), (0, y), (y, y)} is invariant under A, it follows that for any n, cardinal
interpolation with Mn,r>. is correct if and only if -n < 2ny < n.
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